Islet transplantation under the kidney capsule fully corrects the impaired skeletal muscle glucose transport system of streptozocin diabetic rats.
نویسندگان
چکیده
Chronic insulin therapy improves but does not restore impaired insulin-mediated muscle glucose uptake in human diabetes or muscle glucose uptake, transport, and transporter translocation in streptozocin diabetic rats. To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule. Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively). Plasma membrane and intracellular microsomal membrane vesicles were prepared from hindlimb skeletal muscle of basal and maximally insulin-stimulated rats. Islet transplantation normalized plasma membrane carrier-mediated glucose transport Vmax, plasma membrane glucose transporter content, and insulin-induced transporter translocation. There were no differences in transporter intrinsic activity (Vmax/Ro) among the three groups. Microsomal membrane GLUT4 content was reduced by 30% in untreated diabetic rats and normal in transplanted diabetics, whereas the insulin-induced changes in microsomal membrane GLUT4 content were quantitatively similar in the three groups. There were no differences in plasma membrane GLUT1 among the groups and between basal and insulin stimulated states. Microsomal membrane GLUT1 content was increased 60% in untreated diabetics and normalized by the transplantation. In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats.
منابع مشابه
Effects of balloon injury on neointimal hyperplasia in streptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats.
BACKGROUND The mechanisms of increased neointimal hyperplasia after coronary interventions in diabetic patients are still unknown. METHODS AND RESULTS Glucose and insulin effects on in vitro vascular smooth muscle cell (VSMC) proliferation and migration were assessed. The effect of balloon injury on neointimal hyperplasia was studied in streptozotocin-induced diabetic rats with or without adj...
متن کاملDoes the Relief of Glucose Toxicity Act As a Mediator in Proliferative Actions of Vanadium on Pancreatic Islet Beta Cells in Streptozocin Diabetic Rats?
Background: Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats. Methods: Rats were divided into five groups of normal and diabetic. Diabetes ...
متن کاملIntrahepatic Glucose Flux as a Mechanism for Defective Intrahepatic Islet -Cell Response to Hypoglycemia
OBJECTIVE—Glucagon responses to hypoglycemia from islets transplanted in the liver are defective. To determine whether this defect is related to intrahepatic glycogen, islets from inbred Lewis rats were transplanted into the hepatic sinus (H group), peritoneal cavity (P group), omentum (O group), and kidney capsule (K group) of recipient Lewis rats previously rendered diabetic with streptozotoc...
متن کاملExercise induces hypoglycemia in rats with islet transplantation.
Recently, islet transplantation in patients with type 1 diabetes has had greater success than in the past, but the important question of whether the kinetics of islet secretion are able to accommodate the metabolic demands of special conditions such as exercise remains unanswered. Syngeneic rat islets (4,000 islet equivalents/rat) were transplanted into the liver, kidney, and peritoneal cavity ...
متن کاملEffects of streptozocin diabetes and diabetes treatment by islet transplantation on in vivo insulin signaling in rat heart.
The insulin signaling cascade was investigated in rat myocardium in vivo in the presence of streptozocin (STZ)-induced diabetes and after diabetes treatment by islet transplantation under the kidney capsule. The levels of insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit, insulin receptor substrate (IRS)-2, and p52(Shc) were increased in diabetic compared with con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 97 6 شماره
صفحات -
تاریخ انتشار 1996